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J .  Phys. A: Math. Gen .  19 11986) 961-971. Printed in Great Britain 

Monte Carlo renormalisation group for the true self-avoiding 
walk 

Hans Christian Ottinger 
Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Str. 3, D-7800 Freiburg, 
West Germany 

Receiked 22 April 1985 

Abstract. Following the general ideas by Swendsen a Monte Carlo renormalisation group 
( M C R G )  estimation of the end-to-end distance exponent Y for the one-dimensional true 
self-avoiding walk (TSAW) has been carried out. 

Because the TSAW is known to reach its asymptotic behaviour only very slowly an 
approximate expression for the fixed point has been determined by Monte Carlo techniques. 
This approximate fixed point has then been used as a starting point for the M C R G .  The 
final result for the exponent U is 0.665 r0.004, 

1. Introduction 

During the last two years a number of generalisations of random walk models have 
appeared in the literature (Duxbury et a /  1984, Duxbury and de  Queiroz 1985 and 
references therein). The great interest in these generalised random walk models stems 
from their unusual critical properties rather than from their relevance to certain physical 
problems. In the present paper one of these new models-the so-called 'true self- 
avoiding walk' (TSAW) in one dimension-will be studied by the Monte Carlo renormali- 
sation group (MCRG)  method. An approximate expression for the fixed point model 
which governs the universal behaviour of the TSAW at large distances will be used to 
estimate the end-to-end distance exponent v. 

The TSAW (Amit et a1 1983)-which describes the path of a random walker who 
tries to avoid regions in space previously visited-can be defined in the one-dimensional 
case as follows: starting at the origin, the random walker has to move at any step to 
one of the nearest neighbours i* I of the current position i. The probability P , . ~  for 
moving to the site ii. 1 depends on the number of previous visits n,+, of these sites by 

(1) 

where the parameter g defines the strength with which the walk avoids itself. ,4lthough 
the TSAW is commonly studied as a mathematical model in its own right it should be 
mentioned that special physical realisations of this model have been described by 
Bulgadaev and Obukhov (1983) and Family and Daoud (1984). 

From a self-consistent approach to the TSAW Pietronero (1983) obtained the uni- 
versal (independent of g for 0 < g < c) end-to-end distance exponent v = 213 (see also 
Obukhov 1984, Family and Daoud 1984, 6ttinger 198Sa). This result for the one- 
dimensional TSAW was confirmed by Monte Carlo simulations (Rammal et ul 1984, 
Bernasconi and Pietronero 1984) and by exact enumeration methods (Stella et a /  1984, 

pix = exp( - g n , =  )[exp( -gn,- 1 + expi -m, !I-' 
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Byrnes and Guttmann 1984). The universality of v has been supported by renormalisa- 
tion group studies too (De Queiroz er a1 1984, Obukhov and Peliti 1983, Peliti 1984a, b). 

A renormalisation group for random walk models which can be treated by Monte 
Carlo techniques can be obtained from two different starting points. The first approach, 
which leads to the real-space renormalisation group, is based on rescaling the size of 
the lattice on which the random walk takes place. Following this approach one has 
to determine the change in the number of steps of the random walk under rescaling 
of the size of the lattice (more precisely, one determines the change in the variable 
conjugated to the number of steps, namely the fugacity). The details and the results 
of this approach are reviewed in the article by Stanley et a1 (1982). 

In the second approach, which is called renormalisation along the chemical 
sequence, a fixed number of steps of the original random walk are grouped together 
to form a single step of the renormalised random walk. Following this approach, 
which starts with a rescaling of the number of steps or the fugacity, one has to determine 
the effective length of the renormalised step; this is the change in the scale of length. 
This renormalisation along the chemical sequence has been suggested by de Gennes 
(1979). 

Ma (1976) suggested a combination of the renormalisation group with Monte Carlo 
techniques (see also Swendsen 1979, 1982). For both approaches outlined above the 
combination of the renormalisation group and Monte Carlo methods has been used 
in order to estimate the end-to-end distance exponent of random walk models (see 
e.g. Redner and Reynolds (1981) and Kremer et a1 (1981) for applications to the 
self-avoiding walk). In the present paper the real-space MCRG will be used in order 
to estimate the end-to-end distance exponent for the TSAW in one dimension. 

In 0 2 an exactly solvable random walk model will be used in order to explain a 
canonical renormalisation rule for one-dimensional kinetic walk models and also to 
discuss several effects observed for the TSAW. In § 3 an approximate expression for 
the fixed point, to which the TSAW tends under iterated rescaling of length, is estimated 
by a Monte Carlo simulation. The results of a subsequent simulation of this fixed 
point model will be used in 0 4 in order to estimate the exponent v. A brief summary 
concludes the paper. 

2. Renormalisation group for the turning point model 

Duxbury et a1 (1984) have introduced the ‘turning point model’ (TPM) in order to study 
the properties of interacting random walk models. In the present section the real-space 
renormalisation group for this simple model will be described for two purposes: firstly, 
the general rules for the construction of renormalised steps for kinetic walk models 
and for the calculation of the end-to-end distance exponent v can be explained most 
clearly for an exactly solvable model. Secondly, the renormalisation group for the 
TPM will also help us to understand several properties observed for the more interesting 
TSAW model. 

The TPM is a model with short range memory effects only. Consider a one- 
dimensional random walk in which each step has a different probability according to 
whether it is in the same direction as (with probability p )  or opposite to (with probability 
1 - p )  the immediately preceding one. Clearly, the case p = f corresponds to the ordinary 
random walk. For any value of p the TPM can be solved by elementary probability 
theory. For example, one obtains for the average squared end-to-end distance after 
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N steps the equation 

W%)=[p/(1 -P) lN-(2P-1) [1- (2P-1)N1/[2(1  -d’I  (O<p<l )  ( 2 )  

from which one reads off the exponent Y = f (equation ( 2 )  differs slightly from the 
formula given by Duxbury et a1 (1984) because these authors have introduced certain 
boundary conditions). Thus, the TPM displays ordinary random walk behaviour for 
any value of p .  However, due to the factor p/ ( l  - p )  in equation (2), the TPM behaves 
for large N like an ordinary random walk on a lattice with spacing [p / ( l  - p ) ] ” ’  
instead of 1.  This effect can be interpreted as a decrease (increase) of the diffusion 
constant for p < f ( p  > f )  due to favouring (suppressing) turning points, thus modifying 
the ‘stiffness’ of the walk. 

For renormalisation group studies one has to introduce a fugacity in order to control 
the number of steps instead of treating the model at a fixed value of the number of 
steps. For kinetic growth models the most reasonable way is to introduce the fugacity 
K as the probability of taking one step at all (Nakanishi and Family 1984). Then, the 
probability for a random walk of N steps is given by K ”( 1 - K )  and one obtains the 
relation 

( N ) =  K/(1-  K )  (3)  

between the average number of steps and the fugacity K. For K + K ,  = 1 one of course 
obtains random walks of infinite number of steps. 

For one-dimensional kinetic walk models there exists a very natural procedure of 
length rescaling. It will now be described how a number of steps of the original model 
can be grouped together to form a renormalised step upon length rescaling by a factor 
of s. To this end one passes from the original lattice L = { i /  i E H} to the coarse grained 
lattice L ’ = { s i / i ~ Z } .  From the kinetic walk on the original lattice L (starting at the 
origin) one obtains a renormalised kinetic walk on the lattice L‘ (also starting at the 
origin) in the following way: a new renormalised step is completed whenever the 
original kinetic walk reaches a point belonging to the lattice L‘. According to this 
canonical renormalisation rule a length rescaling by a factor of s, followed by a 
rescaling by a factor of s2 is exactly equivalent to a single length rescaling by a factor 
of S I S I .  

In consequence of the short range memory of the TPM the probability of a renor- 
malised step to the left or to the right depends only on the direction of the immediately 
preceding renormalised step for this model. Thus, the evolution of the renormalised 
kinetic walk is determined by rules of precisely the same form as for the original kinetic 
walk, and the renormalised model can be described exactly by suitable parameters K‘ 
and p ‘ .  For s = 2 these renormalised parameters can be calculated easily by elementary 
probability theory: 

p’=p/[1-(1 -p) ( l  - 2 p ) K 2 ] .  (4b) 

The end-to-end distance exponent Y can be obtained from the renormalisation 
group transformation (4) in the usual way. To begin with, one has to find the critical 
points K ,  and p c  (i.e. the fixed points) of the renormalisation group transformation. 
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Because K,= 1 for the interesting fixed points one has 

( l - K ’ ) / ( l - K ) -  (dK‘/dK)IK=, 

and therefore the standard theory (Kogut and Wilson 1974) gives 

K - K ,  

- 4 P C ) .  1 - K  K - K ,  

This formula is very plausible because the argument of the logarithm in the 
numerator is the ratio of the length scales R / R ’  while the argument of the logarithm 
in the denominator is the ratio of the average number of steps ( N ) / ( N ’ )  (notice that 
according to equation (3) one has ( N )  -- 1 / (1 -  K )  near K ,  = 1). Thus, equation ( 5 )  
implies R - ( N ) ” .  

For K ,  = 1 one obtains from equations (4) and (5)  the following fixed points and 
critical exponents governing the scaling behaviour of the TPM: 

( i )  p c  = 1 ,  v = 1 (self-avoiding walk fixed point) 
(ii) p c  = f ,  v = (pure random walk fixed point). 

Figure 1 displays the complete flow diagram for the TPM. The scaling behaviour ( K  = 1 )  
for all values of p < 1 is governed by the pure random walk fixed point. 

K 0.5 

I 
0 

I 

0 . 5  
P 

1 
1.3 

Figure 1. Flow diagram for the one-dimensional TPM. SAW and  R W  denote  the self-avoiding 
walk and  the pure random walk fixed points, respectively. 

In the subsequent MCRG study of the TSAW i t  is impossible to simulate the fixed 
point model at the critical value K,= 1 (i.e. walks with an infinite number of steps), 
and one is forced to adopt a proper extrapolation procedure. In figure 2 the exact 
results for v (equation (5)) have been plotted against l / (N)=  (1 - K ) /  K for the TPM 

at the critical value p = $. Obviously, one can carry out a linear extrapolation for 
1/(  N )  -+ 0. Because the slope in figure 2 only varies very slowly with 1 / (  N ) ,  the value 
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0.4 I 
I I I I I I I I I 1  

0 0.2 0 . 4  0 . 6  0.8 1.0 
1 / ( N )  

Figure 2. End-to-end distance exponent v against reciprocal number of steps l / ( N )  for 
the TPM at the critical value p = f. 

of v obtained from a linear extrapolation in the entire region 1/( N )  S 1 is surprisingly 
close to the exact value v = f. The corresponding figure for the TSAW will display a 
very similar behaviour and  we shall be able to extract the asymptotic value of v from 
our results in the range from ( N )  = 3 to ( N )  = 20 (notice that in a direct Monte Carlo 
simulation of the TSAW the asymptotic value of v can only be estimated from the data 
for very large values of N, typically of the order of lo5). 

3. Renormalisation of the TSAW 

From former Monte Carlo simulations (Rammal et a1 1984, Bernasconi and Pietronero 
1984) it is known that the TSAW reaches its asymptotic behaviour only for very large 
values of N,  that is, the TSAW model is far away from the fixed point which governs 
its scaling behaviour. For this reason it is useful to look for another model that has 
the same scaling properties but is nearer to the corresponding fixed point. Using such 
a model the effort for a MCRG estimation of the exponent v will be strongly reduced 
because the fixed point model is already reached after a few successive rescalings. 
Furthermore, the form of the fixed point model (which depends on the renormalisation 
rule) is an  interesting quantity in its own right because the rescaling is carried out 
according to the canonical renormalisation rule described in the preceding section. 
For these two reasons an approximate expression for the fixed point model will be 
determined in the present section. 

Because the fixed point is in general expected to be described by an infinite number 
of parameters one is forced to introduce a reasonable truncation of the parameter 
space. To this end we consider the following class of one-dimensional kinetic walk 
models: let i, be the current position of the random walker, i, the position which the 
walker visited immediately before, and i, the opposite neighbour of the current position 
i,. The probabilities for moving in the next step to the sites i, or  i3 are defined by 

p , =  l / ( l + e A E )  p 3  = I / (  1 + e -AE)  ( 6 )  
respectively. In these formulae the quantity A E  is allowed to depend on the occupation 
numbers n,,, n,? and n,?. Obviously, the TSAW is obtained for L E  = g ( n , ,  - n r l )  (note 
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that in this case i l  and i, are involved in a symmetric form in equation (6)) and the 
TPM is obtained for AE =In[p/( l  - p ) ]  (this is p1 = 1 - p ,  p 3 = p ) .  

Simulations of the TSAW for various values of the self-avoidance parameter and of 
the rescaling factor show that the quantity AE in equation (6) for the rescaled TSAW 

can be approximated very well by the expression 

AE = g(ni2)(nil - ni3) + 6(ni2) .  (7)  

The first term corresponds to a generalised TSAW for which the self-avoidance 
parameter g is allowed to depend on the number of previous visits ni2 (Ottinger 1985b). 
The quantity b( > 0 implies that the renormalised TSAW has-just like the TPM-a 
tendency to suppress turning points, and therefore the renormalised TSAW displays an 
increased stiffness. This fact is the analogue of the renormalised diffusion constant 
found by perturbative renormalisation of the TSAW near two dimensions (Amit et al 
1983, Obukhov and Peliti 1983). 

In order to obtain a useful approximation to the fixed point the TSAW has to be 
renormalised several times one after another. Thus, starting with a renormalised model 
of the form (6) and (7 )  the kinetic walk obtained upon a further length rescaling should 
be of the form (6) and (7),  also. Figure 3 displays a check of this requirement, where 
the model of table 1 has been chosen to be the input model (this is our final approxima- 
tion to the fixed point and therefore the most interesting check). By a Monte Carlo 
simulation the parameters AE(nil, ni,, ni3) have been estimated upon a rescaling by a 
factor of s = 8 for which reasonably large values of the occupation numbers could be 
obtained. Figure 3 shows AE against nil - ni, for ni, = nil = 6. The results are very close 
to a straight line. Keeping ni2 fixed the corresponding results for nil = 3 (n i l  = 9) have 
been included in this figure, where the data points have for reasons of clearness been 
shifted to the right (left) along the straight line. Figure 3 confirms that for fixed ni, 

I - 1  5 I 
1 I I I 1 I 1 I I I I I I 

- 6  - 4  - 2  0 2 4 6 
n -n ,  

'1 3 

Figure 3. The quantity AE introduced in equation ( 5 )  against ntt-n,, for fixed n,> and 
several values of n,, (see text). 
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Table 1. The parameters g ( n )  and b ( n )  (defining a kinetic walk model according to 
equations ( 5 )  and (6)) for an approximation to the fixed point which governs the scaling 
behaviour of the TSAW. 

1 0.440 0.575 
2 0.482 0.407 
3 0.406 0.255 
4 0.337 0.247 
5 0.290 0.242 
n > 5  0.056+ 1.219/n 0.240 

the quantity AE only depends through n , , - n , ,  on the variables n,, and n,,, and is 
moreover a linear function of n,,  - n13. 

As a starting point for the estimation of an approximation to the fixed point 
governing the scaling behaviour of the TSAW a Monte Carlo simulation of the TSAW 

for g = 0.5 has been carried out. The quantities AE(n, , ,  n t ,  - n,J have been estimated 
from the transition probabilities (equation ( 6 ) )  of the rescaled model (for the rescaling 
factor s = 8 )  and the renormalised parameters g ( n )  and b ( n )  have been calculated by 
linear regression according to equation (7) .  Of course, only walks of finite length can 
be generated in a computer simulation, and therefore the simulation has been carried 
out for a fugacity slightly smaller than the critical one, namely 1 - K = Then, 
the walks cease after a finite number of steps and the occupation numbers obtained 
in the simulation for the rescaled walks are bounded (the largest renormalised occupa- 
tion number obviously decreases with increasing rescaling factor). For this reason the 
renormalised parameters g (  n )  and b( n )  could be estimated with reasonable accuracy 
only for n d 20  for the chosen rescaling factor s = 8 .  

The same procedure has been repeated for the kinetic walk model ( 6 )  and ( 7 )  with 
the renormalised parameters g ( n ) ,  b ( n ) .  In doing so the values g ( n ) ,  b ( n )  for n s 5 
resulting from the first simulation have been used directly while for larger values of n 
first order expansions in l / n  

g ( n ) = p , + ( q , / n )  b( ) = Pb -!- ( q b /  ) for n > 5 ( 8 )  
have been assumed to yield good approximations. The results for n = 6 - 2 0  were in 
good agreement with the expansion ( 8 )  and the coefficients p,, q,, Pb and q b  could be 
estimated by linear regression. This procedure was repeated several times until finally 
the values of the renormalised parameters remained unchanged within the statistical 
error bars upon further rescaling. This final approximation to the fixed point was 
reached after six successive rescalings corresponding to an overall rescaling factor of 
86 = 262 144 (for each rescaling some 90 min of CPU time on a Sperry 1 1 0 0 / 8 2  computer 
were used). The results for the critical parameters are summarised in table 1. 

Figure 4 shows g ( n )  and b ( n )  as functions of l l n .  The continuous lines represent 
the parameters of table 1 ,  and the data points on these lines are the results for g ( n )  
and b ( n )  obtained by a further rescaling by a factor of 8 (note that the error bars 
illustrate the statistical uncertainty of the approximate fixed point of table 1 ) .  If the 
renormalisation of kinetic walk models of the form ( 6 )  and (7) led to models of exactly 
the same form the result for the (accordingly exact) fixed point would be independent 
of the rescaling factor. In order to give a feeling of the deviation of our approximation 
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0 0 1  0 2  0 3  0 4  0 5  Y 0 01  0 2  0 3  0 4  0 5  
1 i n  

1 In 

Figure 4. Renormalisation of the parameters g ( n )  and b ( n )  for the approximate fixed 
point defined in table 1 (see text). 

(table 1) from the exact fixed point due to the truncation of the number of parameters, 
the renormalised parameters upon rescaling by a factor of s = 16 have been included 
in figure 1 (the data points connected by broken lines). Small deviations from the 
s = 8 result obviously exist. However, it should be pointed out that these deviations 
are in principle of no importance for the MCRG study described in the next section 
because any model in the universality class of the TSAW can be used as a starting point 
for the MCRG. A model near the fixed point merely reduces the computational effort. 

Concerning the properties of the fixed point of the canonical renormalisation rule 
one can state at least 

( i )  the self-avoidance parameter g is rather small (except for very small values of 
the occupation number n )  

(ii) the parameter b is greater than zero and therefore leads to a suppression of 
turning points (that is, to an increased diffusion constant). 

4. MCRC estimation of the exponent v for the TSAW 

In the year 1979 Swendsen suggested a very general and direct method to simulate the 
fixed point governing the critical behaviour of a given model and  to estimate the 
corresponding critical exponents from the renormalisation group transformation at 
this fixed point. In order to obtain a simulation of the fixed point model one only has 
to simulate the original model at the critical point (this is K += 1 for kinetic walk 
models) and  to carry out a length rescaling which then leads to typical configurations 
of the rescaled model. For a sufficiently large rescaling factor one automatically obtains 
a simulation of the exact fixed point without any truncation of the number of parameters. 
The only purpose of the considerations in the preceding section is to reduce this 
rescaling factor to a value as small as possible in order to obtain useful results with a 
reasonable amount of computer time. 

In practice, one considers the configurations obtained from a Monte Carlo simula- 
tion for the original model by rescaling by the factors s, = 2' ( i  = 1-1) and estimates 
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certain average values. The case of kinetic walk models is particularly easy because 
one knows the exact critical parameter K,= 1 and one has a relation between the 
fugacity parameter K of the model and the average value of the number of steps. 
Therefore, one only has to measure the average value ( N I )  at each rescaling level i 
which fixes the corresponding fugacity K ,  via equation (3). At each rescaling level i 
one obtains v , ( K , )  from (compare equation (5))  

v , ( K [ )  =In  2 / ln [ ( l -  K + , ) / ( l -  K,)1 ( 9 )  

and subsequently one has to carry out the extrapolation KO-+ K ,  = 1 ( K O +  1 implies 
K ,  -+ 1 for all i ) .  Because with increasing rescaling level i the rescaled model approaches 
the fixed point the exponents v, converge to the exact value of v for i -+ a. In practice, 
this limit has to be reached for sufficiently small values of i and this is the only reason 
for starting with the approximate fixed point of table 1 instead of starting with the 
TSAW itself. 

In order to estimate the exponent v of the TSAW the model of table 1 has been 
simulated, and the values of the rescaled fugacities K ,  have been estimated for the 
rescaling levels i = 1-5 and for various values of K O .  Altogether simulations for 50 
different values of KO have been carried out, each simulation consuming some 90 min 
of CPU time on a Sperry 1100/82 computer. 

Figure 5 shows v, as a function of l/(N8) for the rescaling level i = 3 .  U p  to 
surprisingly large values of 1/( N,) the result of a linear extrapolation (1/( N L )  -+ 0) 
changes only very slowly with the upper boundary for the values of 1/(  N I )  considered 
(compare figure 2 for the TPM). In a more accurate extrapolation procedure one has 
to be very careful for two reasons. In the first place, l/(N!) should be sufficiently small 
in order to be in the asymptotic range. O n  the other hand, l /(Nl) should not be too 
small, because otherwise large occupation numbers occur. However, the approximate 
fixed point has been derived only for small values of n and it is not clear whether the 
approximation of table 1 is sufficiently accurate for larger occupation numbers. Indeed, 
one observes for small values of l/(Nt) a deviation from the linear relation between 
v, and l /(Nl).  This is a rather crucial point: simulations for smaller values of l/(N{) 

X 

X 

X 
x 

X 
X 

x 
X 

X 

X 

X X  
X 

X 

0.65 
0 0 10 0.20 0.30 0.LO 

l / ( N )  

Figure 5. M c R G  results for the exponent Y ,  plotted against reciprocal number of steps 
I / ( N 8 )  at the rescaling level i = 3 (the error bars are smaller than the size of the symbols). 
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do not always lead to a better extrapolation because our approximation to the fixed 
point may become worse for the correspondingly larger occupation numbers. Then, 
it might be necessary to go to much higher rescaling levels i in order to see the true 
fixed point behaviour (a bad approximation to the fixed point possibly approaches 
the exact fixed point as slowly as the TSAW itself). 

Therefore, the evaluation of the results has been carried out in two steps. To begin 
with it was checked for different values of E,, to see whether a linear relation between 
v, and l/(N,) holds for E ,  < l/(N,)<O.2 (more precisely, quadratic effects in l / (N, )  
have also been taken into account by second order linear regression). The quantity E ,  

has been chosen so large that within the statistical error bars no deviation from such 
a relation could be found. Typical values for E ,  are some 0.05, that is ( N , )  = 20, and 
consequently the values of the occupation number n correspond roughly to the range 
for which the approximate fixed point of table 1 has been derived. 

In the second step a second order linear regression has been carried out where the 
data for l / (N,)  in the range from E ,  to m, for several values of the upper bound m, 
have been taken into account. The results are summarised in table 2. For the rescaling 

Table 2. MCRG estimates for the exponent v of the TSAW for different rescaling levels i. 
The values in the table have been obtained Py linear extrapolation ( 1 / (  N , )  + 0) ,  where only 
the results for l / (N, )  smaller than m, have been taken into account. 

i m, = 0.30 m, = 0.25 m, = 0.20 

1 0.672 i 0.001 0.670 i- 0.001 0.668 f 0.001 
2 0.665 i 0.001 0 .664i  0.001 0.663 f 0.001 
3 0.672 * 0.001 0.671 iO.001 0.670 f 0.002 
4 0.671 *0.001 0.670 * 0.001 0.669 * 0.002 

levels i = 3 and i = 4 the results are completely consistent, whereas the data for i = 2 
are clearly different from the data for i = 3  and 4. Taking into consideration the 
tendency of the results to decrease with mi and assuming that the asymptotic result is 
reached for i = 3  and 4 one obtains from table 2 the final estimate for the exponent 
v = 0.665 * 0.004 for the TSAW which is in good agreement with the direct Monte Carlo 
results v = 3 * 0.003 (Rammal et a1 1984), v = 0.67 * 0.01 (Bernasconi and Pietronero 
1984) and the possibly exact value v =a. 

5. Summary 

A canonical renormalisation rule for one-dimensional kinetic walk models has been 
described in the context of the TPM for which the exact renormalisation group transfor- 
mation has been determined and discussed. The flow diagram of the TPM shows two 
fixed points corresponding to the self-avoiding walk with end-to-end distance exponent 
v = 1 and to the pure random walk with v = f. 

For the TSAW an approximate expression for the fixed point governing its asymptotic 
behaviour has been obtained by Monte Carlo renormalisation according to the canoni- 
cal rule. To this end the behaviour of the TSAW upon length rescaling has been studied 
in detail. The fixed point is characterised by typically very small self-avoidance 
parameters and a suppression of turning points (that leads to an increased diffusion 
constant). 
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Following the general ideas of Swendsen (1979), the approximate expression for 
the fixed point has been used as a starting point for a MCRG estimation of the exponent 
v for the TSAW (the TSAW itself has not been chosen as a starting point since it is 
known to approach only very slowly the corresponding fixed point). The extrapolation 
of the results to long walks is very crucial because the approximate fixed point has 
been determined only for small occupation numbers. As a final result v = 0.665 * 0.004 
has been obtained. 
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